A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells
نویسندگان
چکیده
PPARgamma ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN) PPARgamma mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs). In quiescent CASMCs, adenovirus-expressed DN-PPARgamma promoted G1-->S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARgamma expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT) or constitutively-active (CA) PPARgamma inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARgamma expression, however, did not up-regulate positive cell cycle regulators in PPARgamma-deficient cells, strongly suggesting that DN-PPARgamma effects on cell cycle result from blocking the function of endogenous wild-type PPARgamma. DN-PPARgamma expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARgamma-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARgamma promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs).
منابع مشابه
Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression.
Vascular smooth muscle cell (VSMC) proliferation is a critical event in the development and progression of vascular diseases, including atherosclerosis. We investigated whether the activation of adenosine monophosphate-activated protein kinase (AMPK) could suppress VSMC proliferation and inhibit cell cycle progression. Treatment of human aortic smooth muscle cells (HASMCs) or isolated rabbit ao...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملLDL receptor-related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells.
Initial studies have established expression of low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) in vascular smooth muscle cells (VSMCs). We hypothesized that LRP6 is a critical mediator governing the regulation of the canonical Wnt/beta-catenin/T cell factor 4 (Tcf-4) cascade in the vasculature. This hypothesis was based on our previous work demonstrating a role for the beta-cate...
متن کاملOverexpression of allograft inflammatory factor-1 promotes proliferation of vascular smooth muscle cells by cell cycle deregulation.
Allograft inflammatory factor-1 (AIF-1) is not present in normal arteries, but its expression is induced in vascular smooth muscle cells (VSMCs) in several models of arterial injury. The proliferation of VSMCs is a major component of neointimal hyperplasia in many arteriopathies, and the purpose of this study was to determine the role of AIF-1 in the growth of VSMCs. Transfection and constituti...
متن کاملADAM17 mediates epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II.
BACKGROUND Angiotensin II (Ang II) promotes growth of vascular smooth muscle cells (VSMCs) via epidermal growth factor (EGF) receptor (EGFR) transactivation mediated through a metalloprotease-dependent shedding of heparin-binding EGF-like growth factor (HB-EGF). However, the identity of the metalloprotease responsible for this process remains unknown. METHODS AND RESULTS To identify the metal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009